37 template<
double (*scoreFct)(
double,
double,
double,
double,
double)>
40 double contraction_cost(
double _m,
double _n,
double _r,
double _sparsity1,
double _sparsity2);
42 double score_size(
double _m,
double _n,
double _r,
double _sparsity1,
double _sparsity2);
43 double score_mn(
double _m,
double _n,
double _r,
double _sparsity1,
double _sparsity2);
44 double score_speed(
double _m,
double _n,
double _r,
double _sparsity1,
double _sparsity2);
45 double score_r(
double _m,
double _n,
double _r,
double _sparsity1,
double _sparsity2);
46 double score_big_tensor(
double _m,
double _n,
double _r,
double _sparsity1,
double _sparsity2);
47 double score_littlestep(
double _m,
double _n,
double _r,
double _sparsity1,
double _sparsity2);
double score_littlestep(double _m, double _n, double _r, double _sparsity1, double _sparsity2)
const std::vector< ContractionHeuristic > contractionHeuristics
Very general class used to represent arbitary tensor networks.
void greedy_best_of_three_heuristic(double &_bestCost, std::vector< std::pair< size_t, size_t >> &_contractions, TensorNetwork _network)
double contraction_cost(double _m, double _n, double _r, double _sparsity1, double _sparsity2)
The main namespace of xerus.
double score_mn(double _m, double _n, double _r, double _sparsity1, double _sparsity2)
void exchange_heuristic(double &_bestCost, std::vector< std::pair< size_t, size_t >> &_contractions, TensorNetwork _network)
void(* ContractionHeuristic)(double &, std::vector< std::pair< size_t, size_t >> &, TensorNetwork)
void greedy_heuristic(double &_bestCost, std::vector< std::pair< size_t, size_t >> &_contractions, TensorNetwork _network)
Header file for shorthand notations that are xerus specific but used throughout the library...
double score_big_tensor(double _m, double _n, double _r, double _sparsity1, double _sparsity2)
double score_r(double _m, double _n, double _r, double _sparsity1, double _sparsity2)
double score_size(double _m, double _n, double _r, double _sparsity1, double _sparsity2)
double score_speed(double _m, double _n, double _r, double _sparsity1, double _sparsity2)